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Abstract
The Lamb shift observed by analysing the antiresonances in the absorption
spectra of Cr3+-doped glass systems has been studied. A discrepancy in the
sign of the experimentally measured shifts and theoretical predictions is found.
The experimental behaviour can be explained if we assume a site dependence
of coupling between 2E and 4T2 levels. The proposed model yields positive
values for shifts in accordance with the experimental results.

1. Introduction

The anomalous features which appear in the absorption spectra (4A2 → 4T2 transition)
of Cr3+-doped glasses have been analysed in terms of Fano antiresonances based on the
interaction between the sharp levels (2E and 2T1) and the level continuum (4T2) [1, 2]. In
this theory, the coupling of a discrete state of energy E0 with a set of states of different
energies which form a continuum gives an energy displacement of the discrete state. The
resonance energy ER calculated from the ratio R(E) of the experimental absorption profile to
the background spectra is slightly shifted compared with the energy of the unperturbed sharp
absorption line (E0). The difference �E = ER − E0, which represents the displacement of
the sharp level due to the coupling with the continuum, is an analogue to the Lamb shift and
can be calculated by stationary perturbation theory [1]. The first direct observation of this
shift was made by Lempicki et al [3] in several Cr3+-doped oxide glasses as a result of the
inhomogeneous broadening in glass. There exists an independent method for analysing the
observed antiresonance profiles, which is the Fano theory adapted by Sturge et al [4]. In this
formulation the Lamb shift is given by �E = W 2G1(E0), where W is the matrix element for
the interaction between the electronic wavefunctions of the discrete level and the continuum,
which in the case of Cr3+ ions would be a spin–orbit coupling. G1(E0) is the Hilbert transform
of the absorption profile of the background spectrum G2(E):

G1(E0) = 1

π
P

∫ +∞

−∞

G2(E)

E0 − E
dE. (1)
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The background spectrum, G2(E), is the absorption band without antiresonance effect and
is determined by fitting the optical absorption band to an appropriate function in the regions
away from the antiresonance. We regard Fano’s relation R(E) to be written as [4]

R(E) = 1 + ρ2 (q2 + 2qε − 1)

1 + ε2
(2)

where ε is given by

ε = (E − E0 − �E)

� + γ
= (E − E0 − W 2G1(E0))

� + W 2G2(E0)
(3)

and the resonance line parameter q is defined as

q = G1(E0)

G2(E0)
. (4)

In the last expressions, we have expressly written G1(E0) or G2(E0) to indicate that the
functions are calculated at E0 according to the usual Fano formulation. ρ2 determines
the fraction of band states that take part in the interference processes and � represents the
width related to processes with a coupling different from the spin–orbit one (electron–phonon
interactions) [1, 2, 4].

In the last few years, many studies of Fano antiresonances in the absorption spectra of
different optical materials have been reported in the literature [5–10]. However, a study of the
‘Lamb shift’ related to the antiresonances has not yet been made. Table 1 contains a summary
of the 2E antiresonance parameters collected in a variety of Cr3+-doped glasses in which �E

can be determined experimentally [3,10–13]. The value of �E is calculated as ER −E0, where
ER is the resonance energy taken from the analysis of the antiresonance profiles while E0 is
derived from experimental 2E → 4A2 emission peak (R line) originating from a small fraction
of sites for which 2E is the lowest excited state. We see that the proportionality between q and
�E, �E = q[W 2G2(E0)], which can be inferred from equations (3) and (4), is not satisfied
in these glasses. While the shifts are positive, the q values are negative. A positive value of
�E implies that background absorption spectrum G2(E) must peak below E0 if the coupling
W is taken to be constant (see equation (1)). However, the peak of the background absorption
spectra (Eabs) in these glasses is near to or above E0 (Eabs ≈ E0, Eabs > E0). Although
the choice of the background is critical for the calculation of R(E) and numerical values of
ER may be in doubt, the relative position of level E0 (R line: 2E → 4A2 transition) and the
2E antiresonance assures the positive values of �E. This discrepancy in the sign of q and
�E can also be observed in the antiresonances of Cr3+-doped disordered crystals [14, 15]. In
contrast to this behaviour, we find that an analysis of the antiresonance profile of Cr4+-doped
crystals [5] suggests a positive value of �E for a positive value of q.

A recently published paper [16] suggests that Fano’s equation calculated with G1(E) and
G2(E) functions fixed at energy E0 should not be used to interpret the anomalous features
which appear in the absorption spectra profile of metal compounds and that this formulation
should only be applied to slowly varying background spectra. Therefore, equation (2) should
be used by taking coefficients ε and q to be energy dependent, that is G1(E) and G2(E)

functions not evaluated at E0:

ε = (E − E0 − �E)

� + γ
= (E − E0 − W 2G1(E))

� + W 2G2(E)
(5)

q = G1(E)

G2(E)
. (6)

Due to the dependence of γ on energy (γ = W 2G2(E)), it must be noticed that in this case
the ρ2 parameter would also be energy dependent because it is defined as a function of the ratio
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Table 1. Summary of 2E antiresonance parameters corresponding to several Cr3+-doped glasses
calculated by using the Fano formulation. ER is the resonance energy, E0 is the energy of the
transition to the unperturbed state (2E → 4A2 transition, R line) and �E = ER −E0 is the ‘Lamb
shift’. q is a parameter which describes the shape of the resonance profile. Eabs is the peak of the
background absorption spectrum.

Glass ER (cm−1) E0 (cm−1) �E (cm−1) q

74P2O5–26Al2O3 14 793 14 662 +131 0 E0 ≈ Eabs

[3] (T = 7 K) (T = 7 K)

67P2O5–33Na2O 14 800 14 640 +160 −0.2 E0 < Eabs

[3] (T = 7 K) (T = 7 K)

74SiO2–13Na2O–13CaO 14 780 14 580 +200 −0.2 E0 < Eabs

[3] (T = 7 K) (T = 7 K)

LiO2–2SiO2 14 734 14 580 +154 −0.56 E0 < Eabs

[10] (T = 13 K) (T = 13 K)

73SiO2–14Na2CO3–13CaCO3 14 760 14 600 +160 negativea E0 < Eabs

[11] (T = 4.2 K) (T = 4.2 K)

BIGaZYT 15 245 15 152 +93 −0.105 E0 < Eabs

[12, 13] (T = 77 K) (T = 4.2 K)

ZBLA 15 199 —b +47c −0.085 E0 < Eabs

[12] (T = 77 K)

a Not calculated. Since E0 < Eabs, its value would be negative.
b Not observed.
c Assuming R line as in BIGaZYT glass.

γ /� + γ [4]. For the case studied, we shall see that the variation of G1(E) and G2(E) functions
with energy will not change the R(E) profile near the dip position. Therefore, if this energy
dependence were considered, the discrepancy in the sign of the Lamb shift would still remain.

The purpose of this work is to explain the discrepancy found in the sign of �E by taking
into account the inhomogeneous broadening in glasses. Indeed, the possibility of measuring
the �E shifts is a consequence of disorder being inherent to glasses. In a previous work [12],
the authors also noticed the dependence of �E on glass inhomogeneity. By analysing the
antiresonances of Cr3+-doped fluoride glass excitation spectra at 4.2 K, a pronounced blue
shift of ER with decreasing emission wavelength (λem) and increasing time after excitation
was observed. This behaviour was related to glass inhomogeneity and this shift was shown
to depend on the inhomogeneous broadening related to the Cr3+ ion site distribution. In this
paper we propose a model which takes into account a site dependence of coupling between
2E and 4T2 levels in order to explain the experimentally measured shifts and yields positive
values for them.

2. Results and discussion

As was commented in the introduction, the inhomogeneous broadening related to the ion site
distribution in glasses will be regarded to explain the obtained �E values. The Cr3+ ions in
a glass occupy a range of crystal field sites, and there is a spread of luminescent 4T2 energy
levels among them. We shall introduce the effects of site to site disorder in the 4A2 → 4T2

transition by supposing that the distribution of 4T2 energy levels among the ions is described
by a distribution function F(ξ). The variable ξ represents the crystal field splitting, that is,
the electronic separation between the 4A2 and 4T2 levels. A normalized Gaussian distribution
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Figure 1. Configurational coordinate diagram representing the distribution of the Cr3+ site in
glasses. The area between broken curves represents the site distribution of the crystal field splitting.

function F(ξ) is taken to describe this distribution of energy levels [17–20]:

F(ξ) = 1√
2πσ

exp

(
− (ξ − ξP )2

2σ 2

)
(7)

where ξP is the centre of the distribution and
(
2
√

2 ln 2
)
σ the width at half maximum. ξP is

the crystal field value of Cr3+ sites with a maximum probability and σ is the disorder width.
On the basis of a point charge model, the crystal field in octahedral symmetry can be written
ξ = C/R5, where C is a constant and R is the distance of the transition-metal ion from six
nearest-neighbour ligand ions. Therefore, the disorder width σ would reflect the distribution of
the distance R at different sites. Figure 1 shows the single configurational coordinate diagram
for the Cr3+ ion where a site variation in the crystal field parameter is taken into account. It
is supposed that the vibrational energy (Sh̄ω) and the energy of the 2E sharp level (E0) for
the Cr3+ sites are constant. Assuming a strong electron–phonon coupling, a Gaussian band
with peak energy ξ +Sh̄ω and full width at half maximum

(
2
√

2 ln 2
)
� is taken for the optical

spectra (σ < �):

G2(E, ξ) = 1√
2π�

exp

(
− (E − (ξ + Sh̄ω))2

2�2

)
. (8)

The Cr3+ absorption line-shape function, including the disorder effect, would be calculated
as the integral G2(E) = ∫

F(ξ)G2(E, ξ) dξ . The result of the integration [15] is a Gaus-
sian function, centred at ξP + S h̄ω, with a width (�2 + σ 2)

1
2 , which would represent the

background spectrum.
In order to calculate the ‘Lamb shift’, we shall assume that mixing between the 4T2

electronic levels and level 2E changes with ξ , that is, the spread of electronic energy levels
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Figure 2. Variation of coupling W between the electronic levels 2E and 4T2 within the crystal field
Gaussian distribution, F(ξ). The curves are calculated with ξP = 12 690 cm−1 and σ = 283 cm−1

for F(ξ) and W1 = 200 cm−1, W2 = 50 cm−1, W3 = ξP = 12 690 cm−1 and W4 = σ = 283 cm−1

for W(ξ).

of the quartet (4T2) gives different spin–orbit couplings W . The site variation of the one-
electron spin–orbit coupling observed in [12] and the fact [4] that not all the electronic states
of 4T2 and 2E are connected by the spin–orbit interaction may support this interpretation. We
shall suppose that the admixture of the 4T2 electronic wavefunction into the 2E electronic
wavefunction depends on the doublet–quartet energy separation and write the interaction W

as

W(ξ) = W1 + W2 tanh

[
W3 − ξ

W4

]
. (9)

The situation is sketched in figure 2, where we can observe how this mixing changes within
the site distribution. The lower-energy ions with a lower energy separation from E0 have a
higher W , while the higher-energy ions have a low coupling. Parameters W1 and W2 represent
the maximum and minimum values of coupling W respectively. At low energies (ξ � ξP )

the value of W tends to W1 + W2, whereas at higher energies (ξ � ξP ) it tends to W1 − W2.
Parameters W1 and W2 are chosen to give values of the spin–orbit coupling corresponding to
these materials. W3 is the value of ξ in which the coupling W takes half the value of its total
variation, that is, W1 (see figure 2). W4 is related to the slope of the curve; as W4 increases the
slope is lower. It is obvious that if we want to express a variation of W within the distribution,
parameters W3 and W4 must be related to the maximum and width of the site distribution, ξP

and σ , respectively.
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With account taken of this site variation of W , the Lamb shift would now be calculated
by the integral

�E =
∫

W 2(ξ)F (ξ)G1 (E, ξ) dξ =
∫

W 2(ξ)F (ξ) dξ
1

π
P

∫ +∞

−∞

G2(E, ξ)

E0 − E
dE (10)

where the definition of the Hilbert transform has been included. The function G2(E) is
normalized to π

(∫
G2(E) dE = π

)
, while F(ξ) is already normalized to unity. This

expression has been worked out and the following double integral is obtained:

�E =
∫ +∞

−∞

W 2(ξ)

�σ
√

π
exp

(
− (ξ − ξP )2

2σ 2

)
exp

(
− (E0 − (ξ + Sh̄ω))2

2�2

)

×dξ

∫ E0−(ξ+Sh̄ω)√
2�

0
exp(t2) dt . (11)

The spectral width γ = W 2G2(E0) which appears in the ε function (equation (3))
would now be calculated by the integral γ = ∫

W 2(ξ) F (ξ) G2(E, ξ) dξ . Replacing the
corresponding functions, we obtain the expression for γ :

γ = 1

2�σ

∫ +∞

−∞
W 2(ξ) exp

(
− (ξ − ξP )2

2σ 2

)
exp

(
− (E0 − (ξ + Sh̄ω))2

2�2

)
dξ . (12)

The value E0 which appears in the last equations represents the energy of the discrete
state 2E. If the integrals are calculated at any value of E0, we obtain the functional energy
dependence of �E and γ .

The parameters of the Cr3+ absorption spectrum used in the calculations correspond to
the glass 74P2O5–26Al2O3 and they have been taken from [3]. We assume the background
spectrum to be a Gaussian function with peak Eabs = 14 690 cm−1 and width (�2 + σ 2)

1
2 =

743 cm−1, which give a value for q = −0.03 at E0 = 14 662 cm−1 in agreement with the
value obtained by Lempicki et al [3]. From works related to the disorder of Cr3+-doped
glasses [17–19], a ratio �/σ = 2.5 has been chosen (σ = 283 cm−1). This value for the
width σ would approximately imply metal–ligand distance variations given by dR/R = 0.004.
The value for the relaxation energy Sh̄ω is taken to be 2000 cm−1 [17, 19]; so, ξP is fixed
to 12 690 cm−1.

Firstly, let us suppose that the coupling W factor is constant. Calculations from
equation (11) give an energy dependence of �E shift which is plotted in figure 3. In this
case, the value of �E at E0 is always negative. As an example, for W = 200 cm−1, which
is a typical value for these materials [18], a value of −2.1 cm−1 for �E at E0 is obtained.
Figure 4(a) shows the ratio R(E) obtained in this case (W = const), which has been calculated
by fixing the G1(E) and G2(E) functions at E0 and taking G1 and G2 functions to be dependent
on energy. A value of � = 60 cm−1 has been chosen in order to obtain the experimental values
of � + γ = 130 cm−1 and ρ2 = 0.21 at E0 [3]. It can be observed that though there are
differences between the profiles far away from the dip, they are quite similar near to it. This
agreement is due to the slow variation of the background spectrum close to the resonance
effect in this material. The line at 14 793 cm−1 represents the position where the dip should
be placed according to the experimental results (see table 1). Therefore, the assumption of
energy dependence in ε, q and ρ2 in the ratio R(E) (G1(E) and G2(E) not being fixed at E0)

does not explain the shift of the curve.
Let us now consider the site distribution model we have presented above, by assuming the

dependence W(ξ). As we have mentioned, the values of parameters W3 and W4 are crucial
because they describe the change of coupling within the distribution. Taking the symmetric
values of the distribution, that is W3 = ξP and W4 = σ and choosing adequate values for
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Figure 3. Solid curve: background absorption spectrum described by a single Gaussian. Dashed
curve: �E obtained by equation (11) with W = 200 cm−1. Dotted curve: �E obtained from
equation (11) by taking into account the dependence of W(ξ) equation (9)) with W1 = 160 cm−1,
W2 = 150 cm−1, W3 = ξP = 12 690 cm−1 and W4 = 100 cm−1. The crosses correspond to the
values of �E at E0 = 14 662 cm−1.

W1 and W2, positive values for �E are obtained. In particular, the values W1 = 200 cm−1,
W2 = 50 cm−1, W3 = ξP = 12 690 cm−1 and W4 = σ = 283 cm−1 yield �E = +4.3 cm−1

at E0. Higher values are achieved if W varies more abruptly both in its value and in its
shape. Varying W from 310 to 10 cm−1 (W1 = 160 cm−1 and W2 = 150 cm−1) and
increasing its slope (W4 = 100 cm−1) the value of the shift at E0 increases up to +18 cm−1

with W3 = ξP = 12 690 cm−1. Although the value of W3 would be varied the obtained result
was not improved. The energy variation of the shift (equation (11)) obtained by taking these
parameters is also plotted in figure 3, where it can be seen how the shift calculated at E0 changes
from a negative value (with W = const) to a positive one. The R(E) obtained by taking the
G1 and G2 functions to be variable, and introducing the functional energy dependence of �E

and γ (equations (11) and (12)), is shown in figure 4(b). The value of γ at E0 is 71 cm−1,
so � is also taken to be 60 cm−1 and parameter ρ2 is fixed to 0.21 at E0. One can see the
displacement to higher energies of the curve calculated with our model if compared with that
obtained with W constant.

Although the site distribution model gives the expected behaviour, that is, positive values
for �E, these are low if compared with the experimental result (130 cm−1). A better agreement
is achieved if the vibrational relaxation energy Sh̄ω is not considered the same for all sites,
particularly, supposing that the vibrational frequency is a function of the splitting parameter ξ ,
which would imply that the density levels vary with energy. Assuming a linear dependence
of Sh̄ω(ξ) on ξ as in [21] and replacing Sh̄ω in equations (11) and (12) by the linear function
Sh̄ω = (Sh̄ω)0 + K(ξP −ξ), we obtain higher values but they are still low. Using the previous
parameters W1 = 160 cm−1, W2 = 150 cm−1, W3 = ξP = 12 690 cm−1 and W4 = 100 cm−1
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Figure 4. (a) The R(E) profile obtained by taking W to be constant, with G1 and G2 energy-
dependent functions (solid curve) and with G1 and G2 fixed at E0 (dashed curve). (b) R(E) obtained
by taking into account the dependence of W(ξ) (dashed curve) and assuming both dependences
W(ξ) and Sh̄ω(ξ) (dotted curve). The solid curve represents R(E) with W constant. In all cases
G1 and G2 functions are energy dependent. The vertical dashed line represents the energy position
where the dip should be placed according to the experimental result.

with (Sh̄ω)0 = 2000 cm−1 and K = −1, �E = +30 cm−1 at E0 is obtained and the calculated
ratio R(E) in this case can be seen also in figure 4(b). It must be mentioned that if only the
dependence of Sh̄ω on ξ were considered in the model, negative values for �E would be
obtained.

The disagreements in the calculated �E values may be attributed to the following factors:
(i) the experimental values of �E are not precise enough due to the procedure by which they
have been obtained; (ii) a double Gaussian function was used as the experimental background
while the background we have considered is a Gaussian function, so the background parameters
may be imprecise; (iii) the discrete state E0 may be inhomogeneously broadened and it could
depend on the Cr3+ site. Experiments on Cr3+ in silicate glass [22] suggest that ions with
the lowest excited state 2E, are in sites whose symmetries are quite similar to each other.
On the other hand, although previous studies of Cr3+-doped materials have shown that the
energy of the state 2E usually decreases when the octahedral crystal field increases, this crystal
field dependence is weak compared with that of state 4T2 [23, 24]; (iv) the use of different
dependences of Sh̄ω upon crystal field [25, 26] could improve the results, though it would
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imply more parameters in the model; (v) the assumption of groups of distinct sites for ions
with different spectroscopic parameters could give a better agreement. This would also involve
more parameters in the model.

3. Conclusions

(a) The Lamb shift �E observed in the absorption spectra of Cr3+-doped glass systems has
been explained by taking into account the site effect of the Cr3+ ions in the glass. In
agreement with experimental results, positive values for �E are obtained by assuming a
model where a site dependence of coupling between the discrete level 2E and level 4T2 is
considered.

(b) The expression relating the resonance-line shape parameter q and �E, which can be
inferred from the Fano theory adapted by Sturge et al [4], �E = q[W 2G2(E0)], would
need to be changed at least in glasses. In order to analyse the validity of this theory,
we should allow for the approximations considered (e.g. the adiabatic approximation, the
linear interaction and the harmonicity).
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